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In this part…
 ✓ Use the powerful technique of regression analysis to estimate 

the relationship between two variables, and take an in-depth 
look at multiple regression where a single dependent variable 
depends on two or more independent variables.

 ✓ Understand the effects of seasonal variation on sales of every-
thing from gasoline prices to retail items. Use a scatterplot to 
see if a time series exhibits seasonal variation and, if so, 
what type. 

 ✓ Predict the future values of economic variables, including stock 
prices, interest rates, and more. 



Chapter 15

Simple Regression Analysis
In This Chapter
▶ Understanding the assumptions underlying regression analysis
▶ Implementing the simple regression model
▶ Interpreting the regression results

R 
egression analysis is a statistical methodology that helps you estimate 
the strength and direction of the relationship between two or more 

variables. The two types of regression analysis are simple regression analysis 
(which I discuss in this chapter) and multiple regression analysis (which I 
cover in Chapter 16). Simple regression analysis allows you to estimate the 
relationship between a dependent variable (Y) and an independent variable 
(X). Multiple regression analysis allows you to estimate the relationship 
between a dependent variable (Y) and two or more independent variables (Xs).

For example, suppose a researcher is interested in analyzing the relationship 
between the annual returns to the Standard & Poor’s 500 (S&P 500) and the 
annual returns to Apple stock. 

 The Standard and Poor’s 500 (S&P 500) is a broad-based stock market index; 
it contains the 500 largest U.S. stocks, based on market capitalization. (The 
market capitalization of a stock equals the market price of the stock times the 
number of outstanding shares.) The returns to the S&P 500 are often used to 
represent the performance of the U.S. stock market.

The researcher assumes that the returns to Apple stock are at least partially 
explained by the returns to the S&P 500 because the S&P reflects overall 
activity in the economy. In other words, the researcher assumes that the 
return on Apple stock depends on the returns to the S&P 500.

To analyze this relationship with simple regression analysis, you treat the 
returns on Apple stock as a dependent variable (Y) and the returns to the 
S&P 500 as an independent variable (X). Regression analysis makes it  
possible to determine how much the returns on Apple stock are affected by 
the returns to the S&P 500. (In other words, how strong is the relationship 
between Apple stock and the S&P 500.)
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This chapter introduces the basic regression analysis framework, including 
the underlying assumptions and the formulas you need to estimate the  
relationships between different variables. I also cover techniques for testing 
the validity of the results in great detail.

The Fundamental Assumption: Variables 
Have a Linear Relationship

Simple regression analysis is based on the assumption that a linear relationship 
exists between X and Y. Intuitively, if two variables have a linear relationship 
between them, a graph of the two variables is a straight line. (For a more 
formal discussion of linear relationships, see the following section “Defining a 
linear relationship.”)

For example, suppose that an equity analyst at a prestigious investment bank 
wants to determine the relationship between a corporation’s sales and  
profits to help him estimate the proper value of the corporation’s stock. He 
has reason to believe that the relationship between sales and profits is linear. 
Further, he assumes that profits are the dependent variable in this relationship, 
while sales are the independent variable. Specifically, he believes that each 
$1,000 increase in sales triggers an increase in profits by $200, while each 
$1,000 decrease in sales has the opposite effect.

The analyst may use regression analysis to determine the actual relationship 
between these variables by looking at the corporation’s sales and profits 
over the past several years. The regression results show whether this  
relationship is valid. In addition to sales, other factors may also determine 
the corporation’s profits, or it may turn out that sales don’t explain profits at 
all. The regression results also show the estimated amount that the profits 
change when sales change by $1,000.

In the following sections, I dig deeper into the linear relationship between the 
dependent and independent variables and show you how to represent this 
relationship graphically.

Defining a linear relationship
In terms of geometry, you can graph a linear relationship with a straight line. 
Algebraically, the general expression for a linear relationship is
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X is the independent variable, Y is the dependent variable whose value is 
determined by the value of X, m is the slope coefficient (how much Y changes 
in response to a change in X), and b is the intercept (the value of Y if X equals 0).

 You calculate the slope of a line (m) with this formula:

Here, ΔY (“delta Y”) represents the change in Y, and ΔX (“delta X”) represents 
the change in X.

Think of the slope as a measure of how much Y changes due to a given 
change in X, or how sensitive the value of Y is to changes in X. A linear  
relationship is one in which the slope is a constant.

You see a linear relationship graphed as a straight line, with the dependent 
variable (Y) on the vertical axis and the independent variable (X) on the  
horizontal axis. See Figure 15-1 for the relationship between X and Y in the 
equation Y = 2X + 3.

 

Figure 15-1: 
Graph of a 

linear  
relationship: 

Y = 2X + 3.
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The equation of the line, Y = 2X + 3, tells you two important things:

 ✓ The slope of the line is 2 (this is the constant that’s multiplied by X), 
which shows that

	 •	For	each	increase	in	X by 1, Y increases by 2.

	 •	For	each	decrease	in	X by 1, Y decreases by 2.

 ✓ The intercept of the line is 3, so if X = 0, the value of Y is 3. (In Figure 15-1, 
you see that 3 is the point where the line crosses the Y axis.)

Using scatter plots to identify  
linear relationships
A scatter plot is a special type of graph designed to show the relationship 
between two variables. (See Chapter 5 for an introduction to scatter plots.)

With regression analysis, you can use a scatter plot to visually inspect the 
data to see whether X and Y are linearly related. The following are some 
examples.

Figure 15-2 shows a scatter plot for two variables that have a nonlinear  
relationship between them.

 

Figure 15-2: 
Scatter 

plot of a 
nonlinear 

relationship.
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Each point on the graph represents a single (X, Y) pair. Because the graph 
isn’t a straight line, the relationship between X and Y is nonlinear. Notice that 
starting with negative values of X, as X increases, Y at first decreases; then as 
X continues to increase, Y increases. The graph clearly shows that the slope 
is continually changing; it isn’t a constant. With a linear relationship, the 
slope never changes.

In this example, one of the fundamental assumptions of simple regression 
analysis is violated, and you need another approach to estimate the  
relationship between X and Y. One possibility is to transform the variables; 
for example, you could run a simple regression between ln(X) and ln(Y). (“ln” 
stands for the natural logarithm.) This often helps eliminate nonlinearities 
in the relationship between X and Y. Another possibility is to use a more 
advanced type of regression analysis, which can incorporate nonlinear  
relationships.

 One regression technique that may be used with nonlinear data is known as 
nonlinear least squares (details may be found at https://en.wikipedia.
org/wiki/Non-linear_least_squares).

Figure 15-3 shows a scatter plot for two variables that have a strongly  
positive linear relationship between them. The correlation between X and Y 
equals 0.9. (See Chapter 5 for an overview on correlation.)

 

Figure 15-3: 
Scatter plot 

of a strongly 
positive 

linear  
relationship.

 

Figure 15-3 shows a very strong tendency for X and Y to both rise above their 
means or fall below their means at the same time. The straight line is a trend 
line, designed to come as close as possible to all the data points. The trend 

https://en.wikipedia.org/wiki/Non-linear_least_squares
https://en.wikipedia.org/wiki/Non-linear_least_squares
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line has a positive slope, which shows a positive relationship between X and 
Y. The points in the graph are tightly clustered about the trend line due to 
the strength of the relationship between X and Y. (Note: The slope of the line 
is not 0.9; 0.9 is the correlation between X and Y.)

Figure 15-4 shows a scatter plot for two variables that have a weakly positive 
linear relationship between them; the correlation between X and Y equals 0.2

 

Figure 15-4: 
Scatter plot 
of a weakly 

positive 
linear  

relationship.
 

Figure 15-4 shows a weaker connection between X and Y. Note that the points 
on the graph are more scattered about the trend line than in Figure 15-3, due 
to the weaker relationship between X and Y.

Figure 15-5 is a scatter plot for two variables that have a strongly negative 
linear relationship between them; the correlation between X and Y equals –0.9.

 

Figure 15-5: 
Scatter plot 

of a strongly 
negative 

linear  
relationship.
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Figure 15-5 shows a very strong tendency for X and Y to move in opposite 
directions; for example, rise above or fall below their means at opposite 
times. The trend line has a negative slope, which shows a negative relationship 
between X and Y. The points in the graph are tightly clustered about the 
trend line due to the strength of the relationship between X and Y.

Figure 15-6 is a scatter plot for two variables that have a weakly negative linear 
relationship between them. The correlation between X and Y equals –0.2.

 

Figure 15-6: 
Scatter plot 
of a weakly 

negative 
linear  

relationship.
 

Figure 15-6 shows a very weak connection between X and Y. Note that the 
points on the graph are more scattered about the trend line than in  
Figure 15-5 due to the weaker relationship between X and Y.

Defining the Population  
Regression Equation

With regression analysis, you typically draw a sample of data from a  
population to estimate the relationship between X and Y. The equation that 
best explains the population data is known as the population regression  
equation, or population regression line:

 The symbol β is the Greek letter “beta,” and the symbol ε is “epsilon.” β0 and 
β1 are known as coefficients of the regression line. β1 is the slope coefficient 
and β0 is the intercept coefficient (or simply the intercept). A coefficient is a 
constant that is multiplied by a variable.
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Based on the assumption that the relationship between X and Y is linear, the 
regression line is designed to capture this relationship as closely as possible.

Other key terms in the equation are

 ✓ i = an index used to identify the members of the population.

 ✓ Yi = a single value of Y, indexed by i, in a population of size n, with the 
values of Y expressed as Y1, Y2, Y3, . . . , Yn.

 ✓ Xi = a single value of X, indexed by i, in a population of size n, with the 
values of X expressed as X1, X2, X3, . . . , Xn.

 ✓ εi = an “error term,” indexed by i; each observation in the population  
(Xi, Yi) has an error term associated with it.

Using the example of the equity analyst from the earlier section, “The 
Fundamental Assumption: Variables Have a Linear Relationship,” suppose 
that the corporation has been in business for the past ten years (2003 to 
2012). X1 represents sales in 2003, and Y1 represents profits in 2003. X2  
represents sales in 2004, and Y2 represents profits in 2004. The analyst 
 continues through 2012, where X10 is 2012 sales, and Y10 is 2012 profits. Each 
(Xi, Yi) pair is a single observation chosen from the population.

The population regression equation has a slope and an intercept and one 
other term that you don’t normally find in the equation for a straight line — 
the error term. The error term is included because the population regression 
equation doesn’t perfectly capture the relationship between X and Y. For 
example, suppose that in the population regression line, β0 = 10 and β1 = 2. 
Assume that actual year 2003 sales were $100 million. The population  
regression line indicates that profits in 2003 should be

Suppose that 2003 profits were actually $200 million. The population regression 
line overstates actual 2003 sales by $10 million. As a result, you compute the 
error term for 2003 (ε1) as follows:
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Estimating the Population  
Regression Equation

In most situations, estimating the population regression line with the entire 
population is impractical because collecting the amount of required data 
can be expensive and time-consuming. Instead, you draw a sample from the 
underlying population that reflects the underlying population as closely as 
possible). You use the sample data to construct a sample regression equation, 
or sample regression line, which you then use as an estimate of the actual 
population regression equation. (Sampling techniques and sampling  
distributions are discussed in Chapter 10.)

The sample regression equation is expressed as

Here,  is the estimated value of Yi, associated with Xi  is the estimated 
value of β0, and  is the estimated value of β1.

 Note that there is no estimated error term in this equation because the esti-
mated value of Yi is actually the average value of a probability distribution; 
thus, there is no error term associated with it.

 The symbol ^ often indicates an estimated value. The proper name for this 
punctuation mark is caret. Often, it’s informally called a “hat.” For example, 
you pronounce  as “beta zero hat.”

You determine these estimated values for  and  by minimizing the sum of 
the squared differences between the actually observed Y values contained in 
the sample data and those that have been predicted by the sample regression 
equation, as shown in the following equation:

Note: In this formula, min stands for “minimize” and tells you to choose 
values of  and  so that the predicted values of Y are as close as possible 
to the actual values of Y. Think of each term 

as a potential mistake or error by the regression line. If this term is positive, 
the regression line has underestimated the true value of Yi. If this term is  
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negative, the regression line has underestimated the true value of Yi. If this 
term equals zero, the regression line has correctly estimated the true value 
of Yi.

The objective of regression analysis is to find the equation that minimizes the 
sum of these errors.

 Note that the value being minimized is actually the sum of the squared values
 of . This is because the sum of these terms always equals zero.

The difference between the actual value of Yi and the predicted value of Yi 
is known as a residual — an estimate of the corresponding error term in the 
population regression equation — and is expressed as follows:

 represents the residual associated with a single observation from the  
population (Xi, Yi). 

As an example, suppose the quality control manager for a manufacturing 
company is interested in seeing the relationship between annual costs of 
production and total output for a specific product. She estimates a regression 
equation based on production data for the years 2005 to 2012. In this case, 
Xi represents quantity produced during a given year, and Yi represents total 
costs during the same year. X represents the quantity produced and Y  
represents the total costs because costs depend on output, not the other way 
around.

The manager assigns indexes to the years in the sample as follows: 2005 = Year 1,  
2006 = Year 2, 2007 = Year 3, and so forth.

Based on the production data taken from the years 2005 to 2012, the esti-
mated regression equation is

The diagram in Figure 15-7 shows the relationship between the actual value 
of Y, the predicted value of Y, the mean of Y, and the residual for Year 1 (2005).

The variables in this diagram are:

X1 is total output during Year 1.

Y1 is total cost during Year 1.

 is the estimated total cost during Year 1.

 is known as “Y bar” and is the average value of Y during the sample 
period.
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Figure 15-7: 
Predicted 

value of 
Y versus 

actual value 
of Y.

 

Notice that the actual value of Y1 is greater than the value estimated by the 
regression line. Both values are greater than the average or mean value of Y. 
(This information is used to construct a measure that explains how well the 
regression line matches the sample data in the later section “Computing the  
coefficient of determination.”)

For each year’s production data from 2005 to 2012,

 ✓  is the difference between the actual and estimated total cost in 
Year i.

 ✓  is the difference between the estimated total cost in Year i and the 
average total cost during the sample period.

 ✓  is the difference between the total cost in Year i and the average 
total cost during the sample period.

Note that .

 ✓  is the size of the incorrect prediction (error) by the regression
  equation. It equals the difference between the actual value of Y and the 

value predicted by the regression equation.

 ✓  shows the benefit of using this regression equation to predict
  the value of Yi instead of using an alternative, such as simply assuming 

that each value of Yi equals .

You estimate the regression equation with formulas for  and  that minimize 
the sum of the squared residuals:
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The resulting equations for the slope of the estimated regression equation is

And the equation for the intercept is

 These formulas are known as ordinary least squares (OLS) estimators. OLS 
is a methodology for estimating regression coefficients. Some of the more 
advanced versions include generalized least squares (GLS) and weighted least 
squares (WLS).

  is the mean or average value of X;  is the mean or average value of Y.

As an example, suppose that X represents the monthly number of hours of 
studying by college students, and Y represents their corresponding grade 
point averages (GPAs). To conduct this study, you choose a sample of eight 
students and list their study hours and GPAs like so:

Y (GPA) X (Monthly Hours of Studying)
3.5 16
3.2 14
3.0 12
2.6 11
2.9 12
3.3 15
2.7 13
2.8 11

Then you can create a scatter plot like Figure 15-8 to represent the data.
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Figure 15-8: 
Scatter plot 

of monthly 
study hours 

and GPA.
 

Figure 15-8 shows that the relationship between these two variables is 
approximately linear. As a result, you can estimate the relationship  
between these two variables with simple regression analysis.

You compute the coefficients of the sample regression equation by following 
these steps:

 1. Find the sample mean of X and Y:
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  In this case, you add up the monthly hours of studying for the eight  
students in the sample and then divide by 8. This gives a sample mean 
of 13.0 hours for these students.

  

  In this case, you add up the GPAs for the eight students in the sample 
and then divide by 8. This gives a sample mean of 3.0 for these students.

  The results of the remaining steps are summarized in Table 15-1.

Table 15-1 Computing the Regression Slope and Intercept
Y (GPA) X (Monthly 

Hours of 
Studying)

3.5 16 3 9 0.5 1.5
3.2 14 1 1 0.2 0.2
3.0 12 –1 1 0.0 0.0
2.6 11 –2 4 –0.4 0.8
2.9 12 –1 1 –0.1 0.1
3.3 15 2 4 0.3 0.6
2.7 13 0 0 –0.3 0.0
2.8 11 –2 4 –0.2 0.4
Sum 24 3 .6

 2. To compute , you subtract the mean of X from each value of X.

 3. To find the value of , you square the value of  for each 
result you found in the previous step.

 4. You calculate  by subtracting the mean of Y from each value of Y.

 5. You compute  multiplying the results in Steps 2 and 4.

  The sum in the  column shows that . The sum in 

  the  column shows that .
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 6. Based on these results, you compute the values of the regression  
coefficients as follows:

  

  

 7. You write the estimated (sample) regression equation as

  

The slope of this equation shows that for students who study between 11 
and 16 hours per month, each additional monthly hour of studying adds 0.15 
points to a student’s GPA. The intercept may be interpreted to mean that a 
student who doesn’t study at all will have a GPA of 1.05.

You can use the sample regression equation to estimate the GPA that results 
from a specified number of hours of studying. For example, if a student  
studies for 15 hours a month, the sample regression equation predicts a GPA 
of .

 When using a regression line to predict the value of Y for a given value of 
X, don’t use any values of X that aren’t contained in the sample data. In this 
example, the regression line is based on values of X between 11 and 16; the 
results of using a value of X outside of this range is subject to a great deal of 
uncertainty.

Testing the Estimated  
Regression Equation

After you estimate the regression line (see the earlier section “Estimating 
the Population Regression Equation”), you can do several tests to check the 
validity of the results. It may be the case that there is no real relationship 
between the dependent and independent variables; simple regression  
generates results even if this is the case. It is, therefore, important to subject 
the regression results to some key tests that enable you to determine if the 
results are reliable.

In the following sections, I introduce a statistic that is designed to check 
whether a regression equation makes sense. This is known as the coefficient 
of determination, also known as R2 (R squared). This is used as a measure of 
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how well the regression equation actually describes the relationship between 
the dependent variable (Y) and the independent variable (X). 

The next technique that may be used to check regression results is a  
hypothesis test of the coefficients of the regression equation. The steps used 
to carry out this hypothesis test are similar to those found in Chapter 12, 
where hypothesis testing is introduced for the first time. This hypothesis 
test is sometimes known as the “t-test” because the test statistic and critical 
values are derived from the Student’s t-distribution (discussed in Chapter 11). 
In this case, if the null hypothesis fails to be rejected, this calls into question 
the validity of the regression results.

Using the coefficient of  
determination (R2)
The coefficient of determination, also known as R2, is a statistical measure 
that shows the proportion of variation explained by the estimated regression 
line. Variation refers to the sum of the squared differences between the 
values of Y and the mean value of Y, expressed mathematically as

R2 always takes on a value between 0 and 1. The closer R2 is to 1, the better 
the estimated regression equation fits or explains the relationship between X 
and Y.

The expression  is also known as the total sum of squares (TSS). 

This sum can be divided into the following two categories:

 ✓ Explained sum of squares (ESS): Also known as the explained variation, 
the ESS is the portion of total variation that measures how well the 
regression equation explains the relationship between X and Y.

  You compute the ESS with the formula

  

 ✓ Residual sum of squares (RSS): This expression is also known as  
unexplained variation and is the portion of total variation that measures 
discrepancies (errors) between the actual values of Y and those estimated 
by the regression equation.
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  You compute the RSS with the formula

  

The smaller the value of RSS relative to ESS, the better the regression line 
fits or explains the relationship between the dependent and independent 
variable.

 ✓ Total sum of squares (TSS):

  The sum of RSS and ESS equals TSS.

  

  R2 (the coefficient of determination) is the ratio of explained sum of 
squares (ESS) to total sum of squares (TSS):

  

  You can also use this formula:

  

  Based on the definition of R2, its value can never be negative. Also, R2 
can’t be greater than 1, so .

 With simple regression analysis, R2 equals the square of the correlation 
between X and Y.

Computing the coefficient  
of determination
The coefficient of determination is used as a measure of how well a regression 
line explains the relationship between a dependent variable (Y) and an  
independent variable (X). The closer the coefficient of determination is to 1, 
the more closely the regression line fits the sample data.

The coefficient of determination is computed from the sums of squares  
determined in the earlier section “Using the coefficient of determination 
(R2).” These calculations are summarized in Table 15-2.
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Table 15-2 Computing the Coefficient of Determination (R2)
Yi Xi
3.5 16 3.45 0.0025 0.2025 0.25
3.2 14 3.15 0.0025 0.0225 0.04
3.0 12 2.85 0.0225 0.0225 0.00
2.6 11 2.70 0.0100 0.0900 0.16
2.9 12 2.85 0.0025 0.0225 0.01
3.3 15 3.30 0.0000 0.0900 0.09
2.7 13 3.00 0.0900 0.0000 0.09
2.8 11 2.70 0.0100 0.0900 0.04
Sum 0 .1400 0 .5400 0 .68

To compute ESS, you subtract the mean value of Y from each of the  
estimated values of Y; each term is squared and then added together:

ESS = = 0.54

To compute RSS, you subtract the estimated value of Y from each of the 
actual values of Y; each term is squared and then added together:

RSS = = 0.14

To compute TSS, you subtract the mean value of Y from each of the actual 
values of Y; each term is squared and then added together:

TSS = = 0.68

Alternatively, you can simply add ESS and RSS to obtain TSS:

TSS =ESS + RSS = 0.54 + 0.14 = 0.68 

The coefficient of determination (R2) is the ratio of ESS to TSS:

This shows that 79.41 percent of the variation in Y is explained by variation 
in X. Because the coefficient of determination can’t exceed 100 percent, a 
value of 79.41 indicates that the regression line closely matches the actual 
sample data.
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The t-test
Another important test of the results of regression analysis is to determine 
whether the slope coefficient (β1) is different from 0. If the slope coefficient 
is close to 0, X provides little or no explanatory power for the value of Y. In 
such a case, you should replace X with another independent variable in the 
regression equation.

To determine whether β1 is different from 0, you need to conduct a hypothesis 
test. (You find more about hypothesis testing in Chapter 12.) The name of the 
hypothesis test used in this case is the t-test, because the test statistic and 
critical values are based on the Student’s t-distribution (covered in Chapter 11). 
You use this test to determine whether the slope coefficient (β1) of the esti-
mated regression equation is significantly different from 0. If β1 = 0, X doesn’t 
explain the value of Y, and the regression results are then meaningless.

The t-test is conducted in several stages. These are detailed in the following 
sections. 

Null and alternative hypotheses
The first is to specify the null hypothesis and the alternative hypothesis. A 
null hypothesis is a statement that is assumed to be true unless you find very 
strong evidence against it. An alternative hypothesis is a statement that is 
accepted instead of the null hypothesis if you reject the null hypothesis.

With the t-test, the null hypothesis is that the slope coefficient (β1) equals 0:
.

This hypothesis implies that the independent variable (X) doesn’t explain the 
value of the dependent variable (Y). The t-test is a very conservative test; the 
burden of proof is to show that X does explain Y.

The alternative hypothesis is that the slope coefficient doesn’t equal 0: 
.

 As discussed in Chapter 12, this type of alternative hypothesis is known as a 
two-tailed test.

Level of significance
The level of significance of a hypothesis test is a measure of the likelihood 
of a specific type of error, known as a Type I error. This occurs when the null 
hypothesis is incorrectly rejected when it is actually true. A Type II error 
results when the null hypothesis is not rejected even though it is false. With a 
small level of significance, there is a very low chance of committing a Type I 



302 Part IV: More Advanced Techniques: Regression Analysis and Forecasting 

error, but a relatively large probability of committing a Type II error. As the 
level of significance is increased, the probability of a Type I error increases 
but the probability of a Type II error decreases.

The choice of level of significance is based on the importance of avoiding 
Type I errors. When you test hypotheses about regression coefficients, the 
level of significance (α) is often 0.05 (5 percent).

Test statistic
A test statistic is a numerical value that is used to determine if the null 
hypothesis should be rejected. If the test statistic has a large value (positive 
or negative), the likelihood that the null hypothesis is rejected is also large.

For testing hypotheses about β1 the appropriate test statistic is

This expression is known as a t-statistic because it follows the Student’s  
t-distribution (covered in Chapter 11).

The term  is the standard error of  which you can think of as the standard
deviation of . (Standard errors are covered in Chapter 10.)

In other words,  is the amount of uncertainty associated with the use of  
to estimate . The larger the standard error of , the less likely you are to 
reject the null hypothesis that = 0.

You compute the test statistic for this hypothesis test as follows:

  Also known as standard error of the regression (SER), the SEE is a measure 
of the dispersion of the sample values above and below the estimated 
regression line.

  

  Based on Table 15-2, SEE is computed as follows:

RSS is computed as:
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  With a sample size of 8, SEE equals:

  

 1. Calculate the standard error of :

  

SEE equals 0.15275.  represents the sum of the squared values of X.  

represents the sample size times the square of the sample mean. 

You can get the values of 
 
and  from Table 15-3.

Table 15-3 The Standard Error of 
Xi

16 256
14 196
12 144
11 121
12 144
15 225
13 169
11 121

The sample mean is obtained by adding up the values in the Xi column, then 
dividing the sum by the sample size of 8:
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The sum of the squared values of X is obtained by squaring each value of X 
and then summing the results:

The formula for computing the standard error of  is:

 2. Calculate the test statistic:

   = 0.15 (see the earlier section “Estimating the Population Regression 
Equation”); therefore, combining this with the standard error of , 
the t-statistic for  is computed as

 

Critical values
A critical value shows the number of standard deviations away from the 
mean of a distribution where:

 ✓ a specified percentage of the distribution is above the critical value

 ✓ the remainder of the distribution is below the critical value

To test a hypothesis, the test statistic is compared with one or two critical 
values. If the test statistic is more extreme than the relevant critical value, 
the null hypothesis is rejected. Otherwise, the null hypothesis fails to be 
rejected. (It’s technically incorrect to say that a null hypothesis is accepted, 
because you don’t know every value in the population being tested.)

With simple regression analysis, the critical values are taken from the 
Student’s t-table with n – 2 degrees of freedom. (These are found in Table 15-4.) 

 Degrees of freedom refers to the number of independent values in a sample. 
When it’s necessary to estimate two measures from a sample (in this case,  
and ) the number of degrees of freedom equals the sample size minus 2.

 The Student’s t-distribution is a continuous distribution that has a mean of 
zero and a larger variance and standard deviation than the standard normal 
distribution (covered in Chapter 9). The distribution is sometimes described 
as having “fat tails” because it’s more spread out.
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The purpose of the t-distribution is to describe the statistical properties of 
sample means that are estimated from small samples; the standard normal 
distribution is used for large samples. (There’s much more about the 
Student’s t-distribution Chapter 11.)

In this case, say you choose the level of significance (α) to be 0.05. (This is 
a widely used value for testing hypotheses about regression coefficients.) 
Because the sample size (n) is 8, the appropriate critical values are

 

You find these values in the Student’s t-table, such as Table 15-4.

Table 15-4 The Student’s t-Distribution
Degrees of Freedom t0.10 t0.05 t0.025 t0.01 t0.005
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169

You find the value of the positive critical value  at the intersection of the 
row for 6 degrees of freedom and the column labeled t0.025, which is 2.447. The 
value of the negative critical value  is then –2.447.

Decision rule
A decision rule is used to determine if the null hypothesis should be rejected. 
Because the alternative hypothesis is , there are two critical values: 
one positive, one negative. (These are shown to be -2.447 and 2.447 in the 
previous section.)

If the test statistic is either greater than 2.447 or less than -2.447, the null 
hypothesis will be rejected. This indicates that there is strong evidence that 
the slope coefficient β1 is not equal to zero; in other words, the regression 
equation does explain the relationship between the dependent variable (GPA) 
and the independent variable (monthly hours of studying).

If the test statistic falls between these two values, the null hypothesis fails to 
be rejected. In this case, there is insufficient evidence to reject the hypothesis 



306 Part IV: More Advanced Techniques: Regression Analysis and Forecasting 

that β1 equals zero. This shows that the regression equation does not explain 
the relationship between the dependent variable (GPA) and the independent 
variable (monthly hours of studying).

In this case, the test statistic is 4.81, which is greater than 2.447. Therefore, 
you reject the null hypothesis in favor of the alternative hypothesis, indicating  
that  is different from 0 (that is, it’s statistically significant). Therefore, 
strong evidence shows that X (monthly hours of studying) does explain the 
value of Y (GPA.)

This result does not imply that hours of studying is the only factor that 
explains GPA, but it is an important determinant of GPA.

You can also test whether the estimated intercept ( ) is statistically significant, 
but often doing so isn’t necessary. The slope coefficient is the most important 
value in the regression equation.

Using Statistical Software
Many spreadsheet programs (such as Excel) and specialized statistical  
packages (such as SPSS) allow you to generate the results you need for  
regression analysis. For example, you can use a spreadsheet program to get 
the results shown in Figure 15-9 for the GPA example from the “Estimating 
the Population Regression Equation” section earlier in this chapter (these 
results were generated using Excel).

As you can see, Figure 15-9 shows the values of  and  under the 
Coefficients column; the values of the coefficient of determination (R2) and 
the standard error of the estimate, under the Regression Statistics column; 
and the standard errors of  and  and the t-statistics, under the columns 
Standard Error and t-Stat.

Figure 15-9 provides one additional useful measure you can use to test 
hypotheses about the coefficients, called p-values (or probability values). The 
p-value represents the likelihood of finding the given t-statistic if the null 
hypothesis is true. An extremely low p-value indicates that the null hypothesis 
of a 0 coefficient should be rejected. More formally, when testing the  
hypothesis , if the p-value is less than the level of significance (α), 
the null hypothesis is rejected; otherwise, it isn’t rejected.

In this example, the p-value for  is 0.002968105; the level of significance is 
0.05; therefore, because the p-value is less than the level of significance, the 
null hypothesis is rejected, confirming the results found when testing the 
hypothesis with the t-statistic.
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Figure 15-9:  
GPA 

regression 
problem.

 

 Using the t-statistic or the p-value to test the significance of a regression  
coefficient will always provide the same results.

Assumptions of Simple Linear Regression
The simple regression model shown in this chapter is based on several 
extremely important assumptions. If any of these assumptions are violated, 
the reliability of the regression results is questionable.

The most important assumptions include the following:

 ✓ The expected value of each error term is 0; that is, . So although 
some error terms are positive and some are negative, they add up to 0.

 ✓ The variances of the error terms are finite and constant for all values of 
xi; this common variance is designated σ2.

 ✓ The error terms are independent of each other (for example, they don’t 
influence each other).

 ✓ Each error term, εi, is independent of the corresponding value of Xi (the 
value of Xi doesn’t influence the value of the error term and vice versa).
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 ✓ The error terms are normally distributed. Although this assumption isn’t 
required for linear regression, it’s often used and allows you to compute 
confidence intervals for the regression coefficients. It also allows you to 
test hypotheses about the coefficients.

With simple regression analysis, two of the most important violations of the 
assumptions include autocorrelation and heteroscedasticity:

 ✓ Autocorrelation occurs when the error terms are correlated with each 
other (they are related to each other). It violates the assumption of  
independence. Two independent variables have a correlation of 0 
between them.

  Autocorrelated error terms can cause the standard errors of the 
regression coefficients to be understated, thus increasing the risk that 
coefficients will be incorrectly found to be statistically significant (for 
example, different from zero).

 ✓ Heteroscedasticity occurs when the error terms don’t have a constant 
variance. This problem can cause the standard errors of the regression 
coefficients to be understated, increasing the risk that coefficients will 
be incorrectly found to be statistically significant (for example, different 
from zero).

 Formal statistical tests are available to help you determine whether these 
problems are present. For example, the Durbin-Watson test is used to find  
evidence of autocorrelation in sample data. (More details can be found at 
http://en.wikipedia.org/wiki/Durbin%E2%80%93Watson_ 
statistic.) The White test is used to find evidence of heteroscedasticity 
in sample data. (More details can be found at http://en.wikipedia.org/
wiki/White_test.)

If autocorrelation is present, you may use the Cochrane-Orcutt procedure, 
which adjusts the regression model for autocorrelation. (More details can  
be found at https://en.wikipedia.org/wiki/Cochrane-Orcutt_
procedure.)

In the case of heteroscedasticity, you may transform the variables into  
natural logarithms and rerun the regression equation; for example, the 
dependent variable could be ln(Y) and the independent variable could be 
ln(X). (“ln” is standard for natural logarithm.) More formal procedures are  
also available to correct for heteroscedasticity, such as heteroscedasticity-
consistent standard errors. (More information about this procedure is 
found at http://en.wikipedia.org/wiki/Heteroscedasticity-
consistent_standard_errors.)

http://en.wikipedia.org/wiki/Durbin%E2%80%93Watson_statistic
http://en.wikipedia.org/wiki/Durbin%E2%80%93Watson_statistic
http://en.wikipedia.org/wiki/White_test
http://en.wikipedia.org/wiki/White_test
https://en.wikipedia.org/wiki/Cochrane-Orcutt_procedure
https://en.wikipedia.org/wiki/Cochrane-Orcutt_procedure
http://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors
http://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors


Chapter 16

Multiple Regression Analysis: Two 
or More Independent Variables 

In This Chapter
▶ Getting familiar with the assumptions underlying multiple regression analysis
▶ Implementing the multiple regression model
▶ Watching for multicollinearity

Y 
ou use regression analysis to estimate the strength and direction of the 
relationship between two or more variables. As I explain in Chapter 15, 

simple regression analysis allows you to estimate the relationship between a 
dependent variable (Y) and an independent variable (X). 

In this chapter, I explore the possibilities of multiple regression analysis, 
which you use to estimate the relationship between a dependent variable (Y) 
and two or more independent variables (X1, X2, . . .).

The additional independent variable(s) introduces more complications into 
multiple regression analysis. In particular, it takes more statistical testing to 
validate the results of a multiple regression model. Further, additional errors 
may arise in multiple regression analysis that can’t take place with simple 
regression analysis.

This chapter explains how to implement multiple regression analysis, how to 
test the results, and what potential pitfalls may arise.
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The Fundamental Assumption: Variables 
Have a Linear Relationship

Just as with simple regression analysis (discussed in Chapter 15), multiple 
regression analysis is based on the assumption that the dependent variable 
and the independent variables have a linear relationship between them.

If two variables are linearly related, a graph of their relationship is a straight 
line. The equation of a straight line is:

 ✓ X is the independent variable

 ✓ Y is the dependent variable

 ✓ m is the slope coefficient

 ✓ b is the intercept

In this equation, the value of Y depends on the value of X (not the other way 
around). The slope tells you how much Y changes when X changes; the  
intercept tells you the value of Y when X equals 0.

For example, suppose that the equation of a straight line is:

Y = 4X – 7

The slope of 4 shows that:

 ✓ if X increases by 1, Y increases by 4

 ✓ if X decreases by 1, Y decreases by 4

The intercept of –7 shows that Y equals –7 when X equals 0.

In addition to having a linear relationship between the dependent variable 
and each independent variable, there must be a joint linear relationship 
between the dependent variable and all the dependent variables.

If variables don’t have a linear relationship, you can still use regression  
analysis; however, you may have to make adjustments to the regression 
equation. For example, it may be that the relationship between Y and X is 
nonlinear but that the relationship between ln(Y) — the natural logarithm 
with base e = 2.71828 — and X1 and X2 is linear. In this case, you can run a 
regression using ln(Y) as the dependent variable and X1 and X2 as the  
independent variables. Another possibility is that the relationship between 
ln(Y), ln(X1), and ln(X2) is linear. In this case, you use ln(Y) as the dependent 
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variable, and ln(X1) and ln(X2) as the independent variables. (Logarithmic 
transformations for regression analysis are discussed in Chapter 15.)

Estimating a Multiple  
Regression Equation

With multiple regression analysis, the population regression equation may 
contain any number of independent variables, such as 

In this case, there are k independent variables, indexed from 1 to k.

For example, suppose that the Human Resources department of a major 
corporation wants to determine whether the salaries of its employees are 
related to the employees’ years of work experience and their level of  
graduate education. To test this idea, the HR department picks a sample of 
eight employees randomly and records their annual salaries (measured in 
thousands of dollars per year), years of experience, and years of graduate 
education.

The following variables are defined:

 ✓ Y represents an employee’s annual salary, measured in thousands of 
dollars.

 ✓ X1 represents an employee’s number of years of job experience. A value 
of 0 represents someone who has no job experience (such as a recent 
college graduate).

 ✓ X2 represents the number of years of graduate education. A value of 0 
represents a college graduate with no graduate education.

The following lists the sample data.

Y (Annual Salary, in 
Thousands)

X1 (Years of 
Experience)

X2 (Years of Graduate 
Education)

80 1 0
90 2 1
100 3 2
120 4 2
85 1 0
95 2 1
105 2 2
140 8 3
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The HR department runs a regression using a spreadsheet program, such as 
Excel. Figure 16-1 shows the results.

 

Figure 16-1: 
Spreadsheet 

showing 
salary 

regression 
results.

 

Taking the intercept and slope coefficients (X1 and X2) from the Coefficients 
column in Figure 16-1, you can fill in the estimated regression equation as

(The values are rounded to two decimal places.)

This equation shows that the following is true for this firm:

 ✓ The starting salary for a new employee with no experience or graduate  
education is $76,470. This amount is based on the intercept of the 
regression equation.

 ✓ Each additional year of experience adds $5,320 to an employee’s salary; 
this amount is based on the coefficient of X1 (years of experience).

 ✓ Each additional year of graduate education adds $7,350 to an employee’s 
salary, which is based on the coefficient of X2 (years of graduate education).

 In each case, you multiply the coefficients by $1,000 to get the impact on 
salary because these variables are measured in thousands of dollars per year.
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The intercept of the equation, 76.47, shows the value of Y (the employee’s annual 
salary) when both X1 (years of experience) and X2 (years of graduate education) 
equal 0 (that is, a new employee with no experience or graduate education). The 
intercept shows that the starting salary is 76.47 × $1,000 = $76,470.

The coefficient of X1, 5.32, shows how much Y changes due to a one-unit 
change in X1. Because X1 represents years of experience, a one-unit change 
in X1 is one additional year of experience. Therefore, each additional year of 
experience adds 5.32 × $1,000 = $5,320 to an employee’s salary.

The coefficient of X2, 7.35, shows how much Y changes due to a one-unit 
change in X2. Because X2 represents years of graduate education, a one-unit 
change in X2 is one additional year of graduate school. Therefore, each  
additional year of graduate school adds 7.35 × $1,000 = $7,350 to an employee’s 
salary.

The following sections show how you can use the results from the spreadsheet 
to predict the salary of an employee with a specified number of years of  
experience and education. A new measure is introduced to determine how 
well the regression equation “fits” or explains the sample data; this is known 
as the adjusted coefficient of determination.

Two types of hypothesis tests are covered. A hypothesis is tested for all the 
slope coefficients of the regression equation as a group; if this hypothesis 
fails to be rejected, then none of the independent variables belong in the 
regression equation. Hypotheses are also tested about the individual slope 
coefficients of the regression equation to see if any of the independent  
variables should be discarded from the regression equation.

Predicting the value of Y
You can use the multiple regression equation for employee salaries from the 
previous section to predict the annual salary of an employee with a specific 
amount of experience and education. For example, suppose that a randomly 
chosen employee has five years of experience and one year of graduate  
education. The predicted salary of this employee is

This result shows that the predicted annual salary is (110.42)($1,000) = $110,420.
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The adjusted coefficient of determination
You can use several methods to test how well a multiple regression equation 
actually fits, or explains, the relationship between a dependent variable and 
one or more independent variables in a given data set. One of these methods 
is to use the adjusted coefficient of determination to determine how well the 
regression equation “fits” the sample data. The adjusted coefficient of  
determination is closely related to the coefficient of determination (also 
known as R2) you use to test the results of a simple regression equation 
(shown in Chapter 15).

The adjusted coefficient of determination (also known as adjusted R2 or ( , 
pronounced “R bar squared”) is a statistical measure that shows the propor-
tion of variation explained by the estimated regression line.

Variation refers to the sum of the squared differences between the values of 
Y and the mean value of Y, expressed mathematically as

Adjusted R2 always takes on a value between 0 and 1. The closer adjusted R2 
is to 1, the better the estimated regression equation fits or explains the  
relationship between X and Y.

The key difference between R2 and adjusted R2 is that R2 increases automatically 
as you add new independent variables to a regression equation (even if they 
don’t contribute any new explanatory power to the equation). Therefore, 
you want to use adjusted R2 with multiple regression analysis. Adjusted R2 

increases only when you add new independent variables that do increase  
the explanatory power of the regression equation, making it a much more 
useful measure of how well a multiple regression equation fits the sample 
data than R2.

The following equation shows the relationship between adjusted R2 and R2: 

 ✓ n = the sample size

 ✓ k = the number of independent variables in the regression equation
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Figure 16-2 highlights a section of the regression statistics from the spreadsheet 
in Figure 16-1. 

 

Figure 16-2: 
Spreadsheet 
showing the 

adjusted 
coefficient 
of determi-

nation.
 

Figure 16-2 shows the adjusted coefficient of determination (Adjusted R 
Square) as approximately 0.922.This is computed as follows:

R2 is found on Figure 16-2; it’s labeled “R Square” and equals 0.944346527. 
Because the sample contains eight observations, and there are two  
independent variables (years of experience and years of graduate education), 
the adjusted R2 is computed as:

(This equals the value in Figure 16-2 except for a slight rounding difference.)

The range of possible values for the adjusted coefficient of determination is 
from 0 to 1; in mathematical terms,

Based on the value of adjusted R2, the proportion of variation explained by 
the estimated regression line is approximately 0.922 or 92.2 percent. 
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The F-test: Testing the joint significance  
of the independent variables
The F-test is a special type of hypothesis test that is used to determine if the 
independent variables in a multiple regression equation jointly determine 
the value of the dependent variable. This is done by testing the hypothesis 
that all slope coefficients equal 0. If true, the regression equation doesn’t 
explain the relationship between the dependent and the independent vari-
ables. In this case, you may use a new set of independent variables to try to 
explain the value of the dependent variable.

In the following sections, the steps required to carry out the F-test are 
explained in detail, based on the salaries example found in the section 
“Estimating a Multiple Regression Equation.” This procedure begins with the 
statement of the null and alternative hypotheses, along with the choice of a 
level of significance. The next step is to construct the test statistic and  
compare it to a critical value before making a decision as to the validity of 
the regression equation. (Hypothesis testing is introduced in Chapter 12.)

The null and alternative hypotheses for the F-test
The first step in a hypothesis test is to specify the null hypothesis and the 
alternative hypothesis. A null hypothesis is a statement that is assumed to be 
true unless you find very strong evidence against it. An alternative hypothesis 
is a statement that is accepted instead of the null hypothesis if you reject the 
null hypothesis.

For the F-test with two independent variables, the null hypothesis is

This null hypothesis indicates that both slope coefficients (X1 and X2) equal 
0. A coefficient of 0 suggests that an independent variable doesn’t explain the 
value of the dependent variable. If you can’t reject this hypothesis, then you 
can’t use the regression equation to explain the relationship between  
the dependent variable (salaries) and the independent variables (years of 
experience and graduate education). 

The alternative hypothesis is that at least one slope coefficient doesn’t equal 
0. In other words, at least one of the independent variables does belong in 
the regression equation because it explains the value of the dependent  
variable.
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The level of significance for the F-test
The level of significance specifies the probability of a Type I error. This 
occurs when the null hypothesis is incorrectly rejected when it is actually 
true. A Type II error results when the null hypothesis is not rejected even 
though it is false. In many business applications, the level of significance is 
chosen to be 0.01, 0.05, or 0.10, and 0.05 is a common choice.

The Greek letter α (“alpha”) is normally used to represent the level of  
significance. The choice of the level of significance depends on how impor-
tant it is to avoid a Type I error compared with the importance of avoiding a 
Type II error. The higher the level of significance, the greater is the probabil-
ity of a Type I error, and the lower is the probability of a Type II error.

 It’s impossible to reduce the probability of both a Type I and a Type II error 
without increasing the size of the sample used to test the null hypothesis.

The test statistic for the F-test
A test statistic is a numerical value that’s used to determine if the null 
hypothesis should be rejected. If the test statistic has a large value (positive 
or negative), the likelihood that the null hypothesis will be rejected is also 
large.

You compute the test statistic (also known as the F-statistic) with this  
equation:

This test statistic is known as the F-statistic because probabilities for this  
statistic may be computed from the F-distribution. (The F-distribution is 
introduced in Chapter 13.)

In the salaries example in section “Estimating a Multiple Regression 
Equation,” the F-statistic equals

The value of R2 is taken from Figure 16-2 (it is labeled “R Square”). n equals 8 
because there are eight elements in the sample. k equals 2 because there are two 
independent variables (years of experience and years of graduate education).



318 Part IV: More Advanced Techniques: Regression Analysis and Forecasting 

 The test statistic follows the F-distribution with k numerator degrees of freedom 
and [n – (k + 1)] denominator degrees of freedom. The F-distribution is  
characterized by two different types of degrees of freedom; these are known 
as numerator degrees of freedom and denominator degrees of freedom. 

For the F-test, you can find probabilities for the test statistic from an F-table 
based on the level of significance, the number of numerator degrees of freedom, 
and the number of denominator degrees of freedom. (See Chapters 13 and 14 
for more on the F-distribution and the F-table.)

Figure 16-3 shows a portion of Figure 16-1, highlighting the ANOVA (analysis of 
variance) table. Here, you see that the value of the F-statistic is 42.42082621, 
which is approximately equal to 42.42 (found under the F-stat column). Note 
that you can also obtain the value of the F-statistic from two values in the 
ANOVA table:

 1. MS(Regression), which equals 1297.000933 and is found at the intersection 
of the row labeled “Regression” and the column labeled “MS”

 2. MS(Residual), which equals 30.57462687 and is found at the intersection 
of the row labeled “Residual” and the column labeled “MS”

The ratio of these two values = 1297.000933 / 30.57462687 = 42.42082621, or 
approximately 42.42.

 

Figure 16-3: 
The ANOVA 

table for 
the salaries 

example.
 

R2 is the ratio of SS(Regression) to SS(Total). Adjusted R2 is obtained from R2 as 

where n = the sample size, and k = the number of independent variables in 
the regression equation.
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The critical value for the F-test
A critical value shows the number of standard deviations away from the 
mean of a distribution where a specified percentage of the distribution is 
above the critical value, and the remainder of the distribution is below the 
critical value.

In general, when testing a hypothesis the test statistic is compared with one 
or two critical values. If the test statistic is more extreme than the relevant 
critical value, the null hypothesis is rejected. Otherwise, the null hypothesis 
fails to be rejected.

For the F-test, there’s a single critical value, which is uniquely determined by the 
level of significance and the numerator and denominator degrees of freedom.

For the F-test, the numerator and denominator degrees of freedom are  
computed as follows:

 ✓ Numerator degrees of freedom: k = 2

 ✓ Denominator degrees of freedom: [n – (k + 1)] = (8 – [2 + 1]) = 5

You can choose the appropriate critical value from an F-table. (The F-table 
is introduced in Chapter 13; the values in the table are taken from the 
F-distribution.)

Unlike the tables used for most other probability distributions, you need one 
entire F-table for each level of significance. Table 16-1 shows an excerpt from 
the F-table for a 5 percent level of significance (α = 0.05):

Table 16-1 A Section of the F-Table with α = 0 .05
υ2\υ1 2 3 4 5 6 7 8 9
2 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
3 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
5 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
6 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
7 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
9 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18
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The top row represents the numerator degrees of freedom (υ1); the first 
column represents the denominator degrees of freedom (υ2).

In this example, you’re looking for a right-tail area of 5 percent with υ1 = 2, and 
υ2 = 5. You find this critical value at the intersection of the column labeled  
2 and the row labeled 5. You express this critical value mathematically as

The decision for the F-test
If the test statistic exceeds the critical value, you reject the null hypothesis; 
otherwise, you don’t reject it. In this case, the test statistic is approximately 
42.42, and the critical value is 5.79. Therefore, you reject the hypothesis that 
all the slope coefficients (β1 and β2) are equal to zero. In other words, one (or 
both) of the independent variables (years of experience and years of graduate 
education) explains the annual salaries of the employees at this company.

Testing the null hypothesis with the p-value when testing  
the joint significance of the slope coefficients
As an alternative to comparing the F-statistic with a critical value, you can 
test the hypothesis by comparing the p-value (probability value) with the 
level of significance.

The p-value represents the probability that a test statistic will equal a  
specified value when the null hypothesis is true. A low p-value is evidence 
against a null hypothesis.

When you’re using the p-value, the decision rule is this: If the p-value is less 
than the level of significance, you reject the null hypothesis; otherwise, you 
won’t reject the null hypothesis.

In this example, the level of significance is 0.05 (5 percent). Figure 16-3 shows 
the p-value (under the Significance F column) as (approximately) 0.0007. 
Because the p-value is well below the level of significance, you reject the null 
hypothesis. Therefore, at least one of the slope coefficients is statistically  
significant at the 5 percent level.

The t-test: Determining the significance  
of the slope coefficients
After you use the F-test to confirm that at least one slope coefficient isn’t 
equal to 0, you test each slope coefficient separately to determine if it 
belongs in the regression equation; this requires the use of a hypothesis test 
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known as the t-test. (The test has this name because the test statistic and the 
critical values are taken from the Student’s t-distribution. See Chapter 15 for 
more on this test.) The t-test lets you determine which of the slope  
coefficients is statistically significant or if both are statistically significant.

Null and alternative hypotheses for the t-test
With the t-test, the null hypothesis states that a slope coefficient equals 0.  
For example, to test the hypothesis that β1 = 0, you would write the null 
hypothesis as .

There are three possible alternative hypotheses:

: This is known as a right-tailed test

: This is known as a left-tailed test

: This is known as a two-tailed test

With a right-tailed test, you are looking for evidence that the actual value of 
β1 is greater than 0; with a left-tailed test, you are looking for evidence that the 
actual value of of β1 is less than 0. With a two-tailed test, you are looking for 
evidence that the actual value of β1 is different from 0. For the t-test, the two-
tailed approach is usually taken.

Level of significance for the t-test
When you test hypotheses about individual regression coefficients, the level 
of significance (α) is often set equal to 0.05 (5 percent). Other commonly 
used choices include 0.001, 0.01, 0.05, and 0.10.

Test statistic for the t-test
For the t-test, the test statistic is the ratio of the estimated coefficient to the 
standard error of the coefficient. For example, the test statistic for determining 
whether β1 = 0 is

 This expression is known as a t-statistic because it follows the t-distribution. 
(You can compute probabilities for the t-statistic from a Student’s t-table. See 
Chapter 11 for more discussion of the Student’s t-distribution.)

You can find the values you need to construct the t-statistic from the regression  
statistics under the Coefficients and Standard Error columns, as shown in 
Figure 16-4.



322 Part IV: More Advanced Techniques: Regression Analysis and Forecasting 

 

Figure 16-4: 
Coefficients 

and 
standard 
errors for 
the salary 
example.

 

As you can see in Figure 16-4, for the variable X1 (years of experience),  
the coefficient is (approximately) 5.32, and the standard error is  
(approximately) 1.70.

The ratio of these two values is

Figure 16-4 also shows that for the variable X2 (years of graduate education), 
or that β2 = 0, the coefficient is (approximately) 7.35, and the standard error 
is (approximately) 3.67.

The ratio of these two values is

Critical values for the t-test
With a multiple regression equation, you take the critical values from the 
Student’s t-table with n – (k + 1) degrees of freedom (n is the sample size and 
k is the number of independent variables).

The number of degrees of freedom refers to the number of independent  
elements in a sample. 

 When testing hypotheses about a slope coefficient, the degrees of freedom 
equals the sample size (n) minus k+1 (k is the number of independent variables 
in the regression equation). This is because the sample data is used to  
estimate k+1 values: These are the estimated intercept and k estimated slope 
coefficients. As a result, the degrees of freedom equal n–(k+1).
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The critical value depends on the alternative hypothesis as follows:

 ✓ For a right-tailed test, there is a single critical value, 

  If the test statistic is greater than this value, the null hypothesis is 
rejected; otherwise, it fails to be rejected.

 ✓ For a left-tailed test, there is a single critical value, 

  If the test statistic is less than this value, the null hypothesis is rejected; 
otherwise, it fails to be rejected.

 ✓ For a two-tailed test, there are two critical values, 

  If the test statistic is greater than the positive critical value or less than 
the negative critical value, the null hypothesis is rejected; otherwise, it 
fails to be rejected.

When testing hypotheses about the slope coefficients in a regression equation, 
the appropriate number of degrees of freedom equals n – (k + 1); n is the 
sample size and k is the number of independent variables. For the salaries 
example, the sample size is 8 and there are two independent variables (years 
of experience and years of graduate education.) Therefore, the degrees of 
freedom equals n – (k + 1) = 8 – (2 + 1) = 5.

Because this is a two-tailed test, two critical values occur:

You can find these critical values in a Student’s t-table, which is based on 
the Student’s t-distribution (see Chapter 11 for details). Table 16-2 shows an 
excerpt:

Table 16-2 The Student’s t-Distribution
Degrees of Freedom t0.10 t0.05 t0.025 t0.01 t0.005

5 1 .476 2 .015 2 .571 3 .365 4 .032
6 1 .440 1 .943 2 .447 3 .143 3 .707
7 1 .415 1 .895 2 .365 2 .998 3 .499
8 1 .397 1 .860 2 .306 2 .896 3 .355
9 1 .383 1 .833 2 .262 2 .821 3 .250
10 1 .372 1 .812 2 .228 2 .764 3 .169

The t-distribution (also known as the Student’s t-distribution) is a continuous 
probability distribution that has a mean of zero, is symmetrical about its 
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mean, and has more areas in the “tails” of the distribution than the standard 
normal distribution. (The standard normal distribution is found in Chapter 9; 
the Student’s t-distribution is found in Chapter 11.) The Student’s t-distribution 
is uniquely characterized by its degrees of freedom.

You find the value of the positive critical value, , at the intersection of the 
row labeled 5 degrees of freedom and the column labeled t0.025. The positive 
critical value is 2.571. Due to the symmetry of the Student’s t-distribution,  
the negative critical value equals the positive critical value with a negative 
sign: –2.571.

Decision rule for the t-test
For testing the hypothesis , you reach the appropriate decision as 
follows:

 ✓ If the value of the test statistic is greater than 2.571, you reject the null 
hypothesis  in favor of the alternative hypothesis .

 ✓ If the value of the test statistic is less than –2.571, you reject the null 
hypothesis  in favor of the alternative hypothesis .

 ✓ If the test statistic falls between –2.571 and 2.571, you don’t reject the 
null hypothesis .

You follow the same process when you test the hypothesis .

For β1, the test statistic is 3.13, which is greater than 2.571. Therefore, you 
reject the null hypothesis  in favor of , which indicates that 
β1 is different from 0 (that is, it’s statistically significant). Therefore, in the 
example used throughout this chapter, strong evidence shows that X1 (years 
of experience) explains some of the value of Y (annual salary).

For β2, the test statistic is 2.00, which is between –2.571 and 2.571. Therefore, 
you don’t reject the null hypothesis . You have insufficient evidence 
to show that that X2 (years of graduate education) explains the value of Y 
(annual salary).

Testing the null hypothesis with the p-value when  
testing the individual slope coefficients
As an alternative to comparing the t-statistic with critical values, you can  
test the hypothesis by comparing the p-value with the level of significance. 
The decision rule is then if the p-value is less than the level of significance, you 
reject the null hypothesis; otherwise, you don’t reject the null hypothesis.
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In the example of the employee salaries, the level of significance is 0.05 (5 
percent). You can find the p-values for X1 and X2 by referring to Figure 16-4.

For β1, the p-value is 0.025720432, which is less than 0.05. Therefore, you 
reject the null hypothesis  in favor of , which indicates that 
β1 is different from 0 (that is, it’s statistically significant).

For β2, the p-value is 0.101492144, which is greater than 0.05. Therefore, you 
don’t reject the null hypothesis . So β2 is not different from 0 (that 
is, it’s not statistically significant).

 The results you get from using the p-value always match the results of  
comparing a test statistic with critical values.

Checking for Multicollinearity
One of the potential difficulties with multiple regression analysis is  
multicollinearity. Multicollinearity occurs when two or more of the independent  
variables are highly correlated with each other, causing the correlated variables 
to have large standard errors, so they appear to be statistically insignificant 
even if they’re not. (In other words, there’s a risk that independent variables 
are removed from the regression equation that should be included.)

Multicollinearity is unique to multiple regression because it has multiple 
independent variables (simple regression has only one independent variable 
so that multicollinearity can’t occur).

A statistic known as the variance inflation factor (VIF) may be used to check 
for multicollinearity. As a rule of thumb, if the VIF is 10 or more, this is a sign 
that multicollinearity is present.

One approach to removing multicollinearity is to eliminate one of the  
correlated variables from the regression. Doing so lowers the p-values of the 
uncorrelated independent variables, which reduces the risk that they’ll be 
considered statistically insignificant when they’re not.
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Chapter 17

Forecasting Techniques:  
Looking into the Future

In This Chapter
▶ Developing time series models with regression analysis
▶ Modeling seasonality in a time series
▶ Using smoothing techniques
▶ Determining which model produces the best forecasts

S 
uppose you could forecast the price of Apple stock at the end of closing 
tomorrow. How rich could you be? What if you could foresee the future 

path of interest rates? How much of an advantage would you have over other 
investors? Trying to predict the future is an ancient art; some would suggest 
that the newest mathematical techniques are no more successful than tarot 
cards and Ouija boards.

Despite of the difficulty of forecasting the future, economists, investors,  
analysts, and traders do attempt to predict future values of economic variables, 
such as stock prices, commodity prices, interest rates, exchange rates, and 
so on. Many trading strategies depend on being able to use past history to 
correctly forecast the future. When these strategies succeed, it’s an open 
question whether their success was due to sophisticated models or just plain 
dumb luck.

While forecasting is notoriously difficult, there are several classical techniques 
that may be useful for short-term business forecasting. These models have 
one thing in common — all base their predictions on past history and the 
assumption that history will be repeated in the future. This chapter focuses 
on these techniques, which include linear trend models, quadratic trend 
models, seasonally adjusted models, and exponential smoothing models.
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Defining a Time Series
A time series is a sequence of random variables indexed by time. (Random 
variables are introduced in Chapter 7.) You express a time series as {yt}, 
where yt is the value of a random variable at time t. For example, daily closing 
price of IBM is a random variable because its value isn’t known prior to the 
end of the trading day. The daily closing price of IBM stock over ten trading 
days can be represented as . yt is the price of IBM stock 
at time t.

 A time series may contain the following effects:

 ✓ Trend effects refers to a long-run increase or decrease in a time series. 
For example, gold prices taken from the past 40 years would show a very 
strong positive trend because prices have risen consistently over this 
period Trends may be due to a large number of different factors, such as 
population growth, technological improvement, and increasing incomes.

 ✓ Seasonal effects refer to the impact of the time of year on economic 
variables. For example, sales of bathing suits, surfboards, and so forth 
are much stronger during the warmer months. Sales of Christmas trees, 
turkeys, and pumpkin pies are stronger during the colder months. Many 
variables aren’t affected by the season; for example, the price of office 
furniture is not likely to fluctuate due to changes in the season.

 ✓ Cyclical effects refer to the impact of the business cycle. For example, 
sales of expensive items, such as new homes and new cars, decline 
when the economy falls into recession. As another example, interest 
rates tend to fall during recessions and rebound during recoveries.

 ✓ Irregular effects refer to the impact of random events such as strikes, 
earthquakes, sudden changes in the weather, and so on.

Modeling a Time Series with  
Regression Analysis

A time series may be modeled in several different ways; one of these is to use 
regression analysis. (Simple regression analysis is covered in Chapter 15, and 
multiple regression analysis is covered in Chapter 16.) In this case, the value 
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of the time series being modeled is assumed to depend only on the passage 
of time; for example, time is the independent variable.

The basic form of a time series regression model can be expressed as 
.

TRt is the trend of the time series at time t, and εt is an error term at time t.

To estimate a time series with regression analysis, the first step is to identify 
the type of trend (if any) that’s present in the data. The type of trend determines 
the exact equation that is estimated. After this has been specified, the next 
step is to run a regression of the time series data using time as the independent 
variable. The final step is to test the validity of the results.

This section explains the different types of trends that may be encountered 
in time series data, such as linear trends and quadratic trends. 

Classifying trends
In the following sections, I define the basic types of trends that may appear in 
a time series.

No trend
In the case where a time series doesn’t increase or decrease over time, it may 
instead randomly fluctuate around a constant value. In this case, the time 
series has no trend. The trend equation is set equal to a constant, which is 
the intercept of a regression equation: 

The corresponding regression equation is .

When no trend occurs, the values of the time series may rise or fall, but on 
average they tend to return to the same level (β0; (for example, the intercept 
of the regression equation). Figure 17-1 shows a time series with no trend.

Notice that the values of Y are randomly rising and falling; there is no clear 
pattern in the data.
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Figure 17-1:  
A time 
series  

without a 
trend.

 

Linear trend
With a linear trend, the values of a time series tend to rise or fall at a constant 
rate (β1). The linear trend is expressed as .

The corresponding regression equation is .

Figure 17-2 shows a time series with a positive linear trend. With this type of 
trend, the independent variable yt increases at a constant rate over time. (If a 
time series has a negative linear trend, the independent variable yt decreases 
at a constant rate over time.)

 

Figure 17-2:  
A time 

series with 
a positive 

linear trend.
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Note that as t increases (such as time elapses), Y tends to increase on  
average. The trend line drawn through the values of Y has a positive slope, 
indicating that Y has a positive linear trend.

Quadratic trend
With a quadratic trend, the values of a time series tend to rise or fall at a rate 
that that is not constant; it changes over time. As a result, the trend is not a 
straight line. The trend is expressed as .

The corresponding regression equation is .

Figure 17-3 shows a time series with a quadratic trend. In this case, the value 
of yt increases at an increasing rate over time.

 

Figure 17-3:  
A time 

series with 
a quadratic 

trend.
 

Note that as t increases (such as time elapses), Y tends to increase at an 
increasing rate. The trend is curving upward; this type of curve indicates that 
the Y has a positive quadratic trend.

 A quadratic equation has at least one squared term. For example, the following 
is a quadratic equation:
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Other possible trends
It’s possible that a trend may contain terms that are raised to the third 
power, fourth power, or higher. This type of trend is extremely rare in  
business applications. Most time series of financial data have a linear trend, a 
quadratic trend, or no trend at all.

Estimating the trend
To estimate a time series, a trend must be estimated. You begin by creating a 
line chart of the time series (line charts are introduced in Chapter 2). The line 
chart shows how a variable changes over time; it can be used to inspect the 
characteristics of the data, in particular, to see whether a trend. For example, 
suppose you’re a portfolio manager and you have reason to believe a linear 
trend occurs in a time series of returns to Microsoft stock. You plot the 
monthly prices from August 2008 to July 2013 on a graph like Figure 17-4.

 

Figure 17-4: 
Monthly 

returns to 
Microsoft 

stock.
 

According to Figure 17-4, no trend occurs in the data. The returns rise and 
fall with no particular pattern. 
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To formally test whether a linear trend occurs, run a time series regression 
with a time trend as the independent variable, which you can set up like so:

In this example, the dependent variable is the price of Microsoft stock, and 
the independent variable is time (measured in months).

Figure 17-5 shows the results of this regression analysis.

 

Figure 17-5: 
Regression 

of Microsoft 
returns 

against time 
with a linear 

trend.
 

To run this regression, the independent variable (time) is assigned numerical  
values as follows. You assign the first date in the sample a value 1, the 
second date a value of 2, and so forth. So for this example, you assign August 
2008 a value of 1, September 2008 a value of 2, and so on so that the last 
observation in the sample, July 2013, has a value of 60.

Note that in Figure 17-5, the coefficient of time is not statistically significant; its 
p-value is approximately 0.6898. For many hypothesis tests, as a rule of thumb 
any p-value above 0.05 indicates that a variable is not statistically  significant. 
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More formally, the null hypothesis  can’t be rejected at the 5 percent 
level of significance (see Chapter 12 for details on hypothesis testing.) This 
means there isn’t enough evidence to show there is a trend in the data.

When there’s no trend, the value of .

As another example, suppose that instead of estimating a linear trend for 
the returns to Microsoft stock, you estimate a linear trend for the price of 
Microsoft stock. Figure 17-6 shows a plot of monthly Microsoft stock prices 
from August 2008 to July 2013.

 

Figure 17-6: 
Monthly 
prices of 

Microsoft 
stock.

 

Figure 17-7 shows the results of running a regression of the price of Microsoft 
stock against time with an assumed linear trend.

The results show that the time variable is statistically significant at the 5 per-
cent level (because the p-value for time is well below 0.05). Based on the coef-
ficients in Figure 17-7, the estimated regression equation is .

(Note that I rounded the coefficients in this equation.) This equation shows 
that during the sample period, the price of Microsoft stock grew by an average 
of $0.1975 per month because 0.1975 is the coefficient of t, and y is measured 
in dollars.
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Figure 17-7: 
Regression 

of Microsoft 
prices 

against time 
with a linear 

trend.
 

Suppose that in your role as portfolio manager you want to determine 
whether a quadratic trend occurs in the time series of Microsoft stock prices.

If there is a quadratic trend in a time series, the appropriate regression  
equation is .

There is one new term in this equation:

Because time is squared here, this term captures the curvature of the trend. If 
this term is statistically significant, the trend associated with this time series 
is said to have a quadratic trend.

Figure 17-8 shows the results of running this regression.
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Figure 17-8: 
Regression 

of Microsoft 
prices 

against time 
with a  

quadratic 
trend.

 

Figure 17-8 shows that the coefficient of time (t) is statistically significant, 
whereas the coefficient of time squared (t2) is not, indicating that there is not 
a quadratic trend in the data, but there is a linear trend. Therefore, the price 
of Microsoft stock should be forecast with the linear trend model: 

Forecasting a Time Series
Based on the estimated regression equation from the previous section,

you can use this equation to predict the future value of Microsoft stock 
prices. By forecasting with a time series regression model, you are using the 
past history of Microsoft stock to make a prediction about where the stock 
will be in the future. 
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Suppose in July 2013 you want to forecast the price of Microsoft stock for 
August 2013. In the section “Estimating the Trend,” the dates associated with 
the Microsoft stock prices are assigned numerical values ranging from 1 to 
60; 60 represents the most recently observed price in July 2013. Therefore, 
August 2013 is assigned a value of 61. To forecast the price of Microsoft stock 
in August 2013, 61 is substituted for t in the regression equation:

Changing with the Seasons:  
Seasonal Variation

Seasonal variation refers to recurring changes in a time series that are due  
to the season of the year. For example, the demand for oil tends to be  
greatest during the summer (for gasoline) and the winter (for heating). For 
such cases, you extend the time series regression model to include a seasonal 
variable (St):

You then use a scatterplot to determine whether a time series exhibits  
seasonal variation, and if so, what type. For example, the seasonality could 
be quarterly or monthly.

To see the effect of seasonality, you can use dummy variables.

A dummy variable is also known as an indicator variable or a binary  
variable. A dummy variable is used to represent the values of a qualitative  
(non-numerical) variable in a regression equation; some examples are 
gender, color, style, and so on.

The most important feature of a dummy variable is that it can assume only 
one of two values: 1 or 0. 1 is normally used to indicate a specified condition 
is true, whereas 0 means that the condition is false. For example, a dummy 
variable could represent the gender of the people who reply to a survey. In 
this case, 1 could represent males and 0 could represent females.
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For modeling seasonal variation, you can use a dummy variable to indi-
cate whether an observation in a time series belongs to a given season. For 
example, suppose you’re analyzing oil demand. You want to see whether the 
demand for oil is related to the quarter of the year. You have reason to believe 
that demand peaks in the fourth and first quarters due to cold weather.

For this exercise, you define the following seasonal dummy variables:

D1 = 1 if time period t is in the first quarter; it equals 0 otherwise.

D2 = 1 if time period t is in the second quarter; it equals 0 otherwise.

D3 = 1 if time period t is in the third quarter; it equals 0 otherwise.

In this case, you have only three dummy variables, not four, because including 
one dummy variable for each season leads to multicollinearity — when two 
or more independent variables in a regression equation are highly correlated 
with each other so they have large standard errors and can appear statistically 
insignificant even if they’re not. Multicollinearity affects the reliability of the 
regression results, and can be avoided by not including highly correlated 
independent variables in the regression equation. (See Chapter 16 for more 
on multicollinearity.)

In this example, the coefficient of D1 measures the impact on oil demand 
of the first quarter compared with the fourth quarter. In other words, the 
fourth quarter is used as a benchmark against which the other quarters are 
measured. If the coefficient of D1 is positive, the demand for oil is greater in 
the first quarter than in the fourth quarter; if the coefficient of D1 is negative, 
the demand for oil is smaller in the first quarter than in the fourth quarter. 
Similarly, the coefficient of D2 measures the impact on oil demand of the 
second quarter compared with the fourth quarter, and the coefficient of D3 
measures the impact on oil demand of the third quarter compared with the 
fourth quarter.

The appropriate time series regression equation is

As an example, suppose a sporting goods store sells surfboards. In this case, 
sales depend heavily on the specific quarter of the year. In particular, sales 
are strongest during the second and third quarters and are extremely weak 
during the first and fourth quarters.
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To analyze the relationship between surfboard sales and quarters, you run 
a regression with, say, ten years of quarterly data. Sales are the dependent 
variable. The independent variables consist of a time trend and a series of 
three quarterly dummy variables, defined as follows:

D1 = 1 if an observation occurs in the first quarter, otherwise 0

D2 = 1 if an observation occurs in the second quarter, otherwise 0

D3 = 1 if an observation occurs in the third quarter, otherwise 0

The graph in Figure 17-9 shows quarterly sales (in thousands of dollars) of 
the sporting goods store for 2001 to 2010. A trend line is included.

 

Figure 17-9: 
Quarterly 

sales 
data with 
seasonal 
variation.

 

Figure 17-9 shows that the trend line by itself does a poor job of explaining 
sales. The trend line is often extremely far from the actual sales numbers 
because the data are highly seasonal. Because the data are clearly affected 
by the seasons, it makes sense to run a regression with a trend and the  
seasonal dummies. Figure 17-10 shows the results. 
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Figure 17-10: 
Regression 

of quar-
terly sales 
data with 
seasonal 
dummies 

and trend.
 

The results show that each of the independent variables has a statistically 
significant coefficient and, therefore, belongs in the regression equation (in 
other words, these variables help explain the value of sales) because the 
p-value is below 0.05 in each case. Here are the approximate coefficients of 
the variables.

Intercept 13.9029
Trend –0.1071
D1 –4.8560
D2 8.2464
D3 7.6572

The trend indicates that sales are decreasing by $107.1 (0.1071 × $1,000) per 
month over the ten-year sample period. The coefficients of the remaining 
dummy variables show the value of sales compared with a trend line at the 
level of average fourth quarter sales. This line has an intercept of 13.9029 and 
a slope of –0.1071 and represents fourth quarter sales.
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The coefficient of D1 shows that sales during the first quarter are below the 
fourth quarter by $4,856.00 (4.8560 × $1,000). The coefficient of D2 shows that 
sales during the second quarter are above the fourth quarter by $8,246.40 
(8.2464 × 1,000). The coefficient of D3 shows that sales during the third  
quarter are above the fourth quarter by $7,657.20 (7.6572 × $1,000).

Implementing Smoothing Techniques
Smoothing techniques are designed to remove random fluctuations from a 
time series so the trend, seasonal variation, and cyclical variation (if any) in 
the data are easy to identify.

Two widely used smoothing techniques are moving averages and centered 
moving averages, which I talk about in the next sections.

Moving averages
A moving average (MA) is an average of the most recent observations in a 
time series. For example, a five-period moving average is the average of the 
five most-recent values in a time series. In general, an n-period moving average is 
the average value of the n most recent observations taken from a time series. 

Compute an n-period moving average with this formula:

For example, the following lists the monthly prices of a stock between 
October 2012 and July 2013.

Month Price
October 2012 100
November 2012 101
December 2012 103
January 2013 99
February 2013 97
March 2013 102
April 2013 101
May 2013 98
June 2013 104
July 2013 106
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To construct a three-month moving average, take the average of the first three 
observations, in this case, October, November, and December prices:

Then find the average of the next three observations, starting with the 
second observation, so you’re finding the average of the second, third, and 
fourth observations (or November, December, and January):

Continue the process for the entire sample. Table 17-1 shows the resulting 
three-month moving averages.

Table 17-1 Three-Month Moving Averages
Month Price 3-Month Moving Average
October 2012 100 ***
November 2012 101 101.33
December 2012 103 101.00
January 2013 99 99.67
February 2013 97 99.33
March 2013 102 100.00
April 2013 101 100.33
May 2013 98 101.00
June 2013 104 102.67
July 2013 106 ***

The first three-month moving average is listed next to November 2012, even 
though it represents the average of October2, November2, and December2. 
This shows that November 2012 is the “center” of the moving average.

Similarly, the three-month moving average constructed from the November2, 
December2, and January3 prices is shown next to December, indicating that 
it’s the center of the average2. Plotting these moving averages and the  
original prices (as shown in Figure 17-11) illustrates that moving averages 
reduce the fluctuations in the data and shows more clearly if there is any 
trend in the data. (The moving averages are said to “smooth out” the data.)
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Figure 17-11: 
Original 

prices and 
three-month 

moving 
average.

 

The number of terms used to compute a moving average is usually determined 
by the data. For example, 12-month moving averages are often used with 
monthly data.

Centered moving averages
A centered moving average is an average of moving averages. How’s that for  
a definition? You use a centered moving average to remove the effect of  
seasonal and irregular factors from a time series, so only the trend and  
cyclical factors remain.

Using the stock prices from the previous example data (refer to Table 17-1), 
the first three-month moving average is 101.33 and the second three-month 
moving average is 101.

The centered moving average is then

Table 17-2 shows the centered moving averages for the rest of the months.
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Table 17-2 Three-Month Moving Averages and  
 Centered Moving Averages
Month Price 3-Month Moving 

Average
Centered Moving 
Average

October 2012 100 *** ***
November 2012 101 101.33 101.17
December 2012 103 101.00 100.33
January 2013 99 99.67 99.50
February 2013 97 99.33 99.67
March 2013 102 100.00 100.17
April 2013 101 100.33 100.67
May 2013 98 101.00 101.83
June 2013 104 102.67 ***
July 2013 106 *** ***

Figure 17-12 shows a comparison of the moving average and centered moving 
average. The centered moving average is smoother than the moving average.

 

Figure 17-12: 
Prices, 

three-month 
moving 

averages, 
and cen-

tered 
moving 

averages.
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Exploring Exponential Smoothing
The moving average and centered moving average techniques have one 
common feature: Both assign equal weights to all elements of a time series. 
For example, when you’re computing a three-month moving average, you 
multiply each observation by a weight of one-third (or, as you may know, you 
can get the same results by dividing by 3 instead). If a time series consists 
of data that become less relevant as time elapses, it may make more sense 
to assign steadily declining weights to older observations. You do this with 
exponential smoothing.

With exponential smoothing, you assign weights to the members of the  
time series to ensure that newer observations have more importance than 
older observations. You implement the weighting scheme using a smoothing 
constant. This is the value that determines how much smoothing takes place; 
the higher the smoothing constant, the more random variation is removed 
from the time series, thus making the time series smoother.

To implement the exponential smoothing approach, you use the following 
formula:

In this formula,

Et = the exponentially smoothed value at time t

Et – 1 = the exponentially smoothed value at time t – 1 (one period in the past)

α = the smoothing constant, which assumes a value between 0 and 1; the 
closer the value is to 1, the more smoothing takes place 

yt–1– = the value of the time series at time t–1 

As an example, look at following lists of daily gold prices between 4/15/13 and 
4/24/2013:

Date Price ($/ounce)
4/15/13 $1,481.84
4/16/13 $1,422.82
4/17/13 $1,368.21
4/18/13 $1,378.20
4/19/13 $1,381.07
4/20/13 $1,401.96
4/21/13 $1,403.53
4/22/13 $1,403.53
4/23/13 $1,421.14
4/24/13 $1,418.78
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An analyst wants to apply exponential smoothing to the data in order to  
produce a forecast of the price of gold on 4/25/13. Suppose the analyst believes 
that the data needs a significant amount of smoothing in order to eliminate 
random daily fluctuations in gold prices and show if there is any trend in the 
data. He picks a high value for the smoothing constant (α); assume that he 
chooses 0.7 Table 17-3 shows the resulting exponentially smoothed values 
of the daily gold prices. (Assume that the exponentially smoothed price for 
4/15/13 has already been computed from prior data to $1,493.77.)

Table 17-3 Daily Gold Prices with Exponential Smoothing
Date Price ($/ounce) Exponentially Smoothed Price (α = 0.7)
4/15/13 $1,481.84 $1493.77
4/16/13 $1,422.82 $1485.42
4/17/13 $1,368.21 $1441.60
4/18/13 $1,378.20 $1390.23
4/19/13 $1,381.07 $1381.81
4/20/13 $1,401.96 $1381.29
4/21/13 $1,403.53 $1395.76
4/22/13 $1,403.53 $1401.20
4/23/13 $1,421.14 $1402.83
4/24/13 $1,418.78 $1415.84

The exponentially smoothed price equals α times the previous day’s price of 
gold plus (1 – α) times the previous day’s exponentially smoothed price.

For example, on 4/16/13, the exponentially smoothed price is

On 4/17/13, the exponentially smoothed price is:
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You compute the rest of the exponentially smoothed values the same way.

The graph in Figure 17-13 shows the relationship between actual gold prices 
and exponentially smoothed gold prices:

 

Figure 17-13:  
Prices 

and expo-
nentially 

smoothed 
prices for 

gold.
 

As you can see, the exponentially weighted values don’t fluctuate as much 
as the original values. With random fluctuations removed from the data, it is 
easier to see the trend in the data.

Forecasting with exponential smoothing
With an exponential smoothing model, you can make a forecast for the next 
period with the following formula. The forecast for time t + 1 (one period in 
the future) as of time t is .

In the gold price example from the previous section, the price on 4/24/13 is 
$1,418.78, while the exponentially smoothed price is $1,415.84. The forecast 
for 4/25/13 is, therefore
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Comparing the Forecasts  
of Different Models

Because there are several different types of models that can be used to  
predict the future values of a time series, it’s important to be able to compare 
the quality of their results. Two techniques that are designed to test how well 
a forecasting model matches actual data are known as mean absolute deviation 
(MAD) and mean square error (MSE).

 ✓ Mean absolute deviation (MAD) is the average absolute value of the  
differences between the actual values of yt and the predicted values (for 
example, the absolute value of the prediction errors). You compute MAD 
with this formula:

  

   is the predicted value of yt

   is known as the prediction error associated with yt

 ✓ Mean square error (MSE) is the average squared prediction error. You 
use the following equation to compute MSE:

  

As an example, Figure 17-14 shows the prices of gold between 4/15/2013 and 
4/24/2013. A time series model was used to forecast the price of gold during 
this period. A prediction error was computed for each date; the prediction 
error equals the actual price of gold minus the predicted value of gold. The 
absolute value of these prediction errors is computed for each date, as is the 
square of the prediction errors.

MAD is the average of the absolute values of the prediction errors; MSE is the 
average of the squared prediction errors. Figure 17-14 shows that the MAD 
equals 24.70, while the MSE equals 1079.44.
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Figure 17-14:  
MAD and 
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For any type of predictive model, the lower the value of the MAD or the MSE, 
the better the model fits the observed data. Using these measures lets you 
compare the results of different models (such as moving averages, exponential 
smoothing, and so forth) to determine which model provides the most  
accurate predictions for a given set of data.

One of the drawbacks of MSE is that it’s more affected by extremely large 
prediction errors than MAD. One of the advantages of MSE is that it has more 
convenient mathematical properties than MAD. Because MAD is based on the 
absolute value, techniques for minimizing MAD are more complex than  
techniques for minimizing MSE. 
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